亚洲福利精品久久久久91|中文字幕乱码视频网|在线播放国产精品一区二区|亚洲成AV人片女在线观看

<thead id="tzpj5"></thead>
  • <cite id="tzpj5"><listing id="tzpj5"></listing></cite>
    <strike id="tzpj5"><option id="tzpj5"><td id="tzpj5"></td></option></strike>

    高中數(shù)列知識點總結歸納

    思而思學網(wǎng)

    數(shù)列的相關概念 

    1.數(shù)列概念

    ①數(shù)列是一種特殊的函數(shù)。其特殊性主要表現(xiàn)在其定義域和值域上。數(shù)列可以看作一個定義域為正整數(shù)集N或其有限子集{1,2,3,…,n}的函數(shù),其中的{1,2,3,…,n}不能省略。

    ②用函數(shù)的觀點認識數(shù)列是重要的思想方法,一般情況下函數(shù)有三種表示方法,數(shù)列也不例外,通常也有三種表示方法:a.列表法;b。圖像法;c.解析法。其中解析法包括以通項公式給出數(shù)列和以遞推公式給出數(shù)列。

    ③函數(shù)不一定有解析式,同樣數(shù)列也并非都有通項公式。

    等差數(shù)列

    1.等差數(shù)列通項公式

    an=a1+(n-1)d

    n=1時a1=S1

    n≥2時an=Sn-Sn-1

    an=kn+b(k,b為常數(shù))推導過程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b

    2.等差中項

    由三個數(shù)a,A,b組成的等差數(shù)列可以堪稱最簡單的等差數(shù)列。這時,A叫做a與b的等差中項(arithmeticmean)。

    有關系:A=(a+b)÷2

    3.前n項和

    倒序相加法推導前n項和公式:

    Sn=a1+a2+a3+?????+an

    =a1+(a1+d)+(a1+2d)+??????+[a1+(n-1)d]①

    Sn=an+an-1+an-2+??????+a1

    =an+(an-d)+(an-2d)+??????+[an-(n-1)d]②

    由①+②得2Sn=(a1+an)+(a1+an)+??????+(a1+an)(n個)=n(a1+an)

    ∴Sn=n(a1+an)÷2

    等差數(shù)列的前n項和等于首末兩項的和與項數(shù)乘積的一半:

    Sn=n(a1+an)÷2=na1+n(n-1)d÷2

    Sn=dn2÷2+n(a1-d÷2)

    亦可得

    a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

    an=2sn÷n-a1

    有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

    4.等差數(shù)列性質(zhì)

    一、任意兩項am,an的關系為:

    an=am+(n-m)d

    它可以看作等差數(shù)列廣義的通項公式。

    二、從等差數(shù)列的定義、通項公式,前n項和公式還可推出:

    a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N

    三、若m,n,p,q∈N,且m+n=p+q,則有am+an=ap+aq

    四、對任意的k∈N,有

    Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差數(shù)列。

    等比數(shù)列

    1.等比中項

    如果在a與b中間插入一個數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項。

    有關系:

    注:兩個非零同號的實數(shù)的等比中項有兩個,它們互為相反數(shù),所以G2=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。

    2.等比數(shù)列通項公式

    an=a1q’(n-1)(其中首項是a1,公比是q)

    an=Sn-S(n-1)(n≥2)

    前n項和

    當q≠1時,等比數(shù)列的前n項和的公式為

    Sn=a1(1-q’n)/(1-q)=(a1-a1q’n)/(1-q)(q≠1)

    當q=1時,等比數(shù)列的前n項和的公式為

    Sn=na1

    3.等比數(shù)列前n項和與通項的關系

    an=a1=s1(n=1)

    an=sn-s(n-1)(n≥2)

    4.等比數(shù)列性質(zhì)

    (1)若m、n、p、q∈N,且m+n=p+q,則am?an=ap?aq;

    (2)在等比數(shù)列中,依次每k項之和仍成等比數(shù)列。

    (3)從等比數(shù)列的定義、通項公式、前n項和公式可以推出:a1?an=a2?an-1=a3?an-2=…=ak?an-k+1,k∈{1,2,…,n}

    (4)等比中項:q、r、p成等比數(shù)列,則aq?ap=ar2,ar則為ap,aq等比中項。

    記πn=a1?a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

    另外,一個各項均為正數(shù)的等比數(shù)列各項取同底指數(shù)冪后構成一個等差數(shù)列;反之,以任一個正數(shù)C為底,用一個等差數(shù)列的各項做指數(shù)構造冪Can,則是等比數(shù)列。在這個意義下,我們說:一個正項等比數(shù)列與等差數(shù)列是“同構”的。

    (5)等比數(shù)列前n項之和Sn=a1(1-q’n)/(1-q)

    (6)任意兩項am,an的關系為an=am?q’(n-m)

    (7)在等比數(shù)列中,首項a1與公比q都不為零。

    注意:上述公式中a’n表示a的n次方。

    熱門推薦

    最新文章